Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.03.486830

ABSTRACT

Alterations in the myeloid immune compartment have been observed in COVID-19, but the specific mechanisms underlying these impairments are not completely understood. Here we examined the functionality of classical CD14+ monocytes as a main myeloid cell component in well-defined cohorts of patients with mild and moderate COVID-19 during the acute phase of infection and compared them to that of healthy individuals. We found that ex vivo isolated CD14+ monocytes from mild and moderate COVID-19 patients display specific patterns of costimulatory and inhibitory receptors that clearly distinguish them from healthy monocytes, as well as altered expression of histone marks and a dysfunctional metabolic profile. Decreased NFkB activation in COVID-19 monocytes ex vivo is accompanied by an intact type I IFN antiviral response. Subsequent pathogen sensing ex vivo led to a state of functional unresponsiveness characterized by a defect in pro-inflammatory cytokine expression, NFkB-driven cytokine responses and defective type I IFN response in moderate COVID-19 monocytes. Transcriptionally, COVID-19 monocytes switched their gene expression signature from canonical innate immune functions to a pro-thrombotic phenotype characterized by increased expression of pathways involved in hemostasis and immunothrombosis. In response to SARS-CoV-2 or other viral or bacterial components, monocytes displayed defects in the epigenetic remodelling and metabolic reprogramming that usually occurs upon pathogen sensing in innate immune cells. These results provide a potential mechanism by which innate immune dysfunction in COVID-19 may contribute to disease pathology.


Subject(s)
COVID-19 , Thrombosis
2.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3739821

ABSTRACT

Background: Accurate and sensitive detection of antibody to SARS-CoV-2 remains an essential component of the pandemic response. Measuring antibody that predicts neutralising activity and the vaccine response is an absolute requirement for laboratory-based confirmatory and reference activity.Methods: The viral receptor binding domain (RBD) constitutes the prime target antigen for neutralising antibody. A double antigen binding assay (DABA) provides the most sensitive format. It has been exploited in a novel hybrid manner employing an S1 solid-phase preferentially presenting RBD once solid-phase bound, coupled with a labelled RBD conjugate, used in a two-step sequential assay.Findings: This assay showed a specificity of 100% on 825 pre COVID-19 samples and a potential sensitivity of 99.6% on 276 recovery samples, predicting quantitatively the presence of neutralising antibody determined by pseudo-type neutralisation and by plaque reduction. Anti-RBD is also measurable in ferrets immunised with ChadOx1 nCoV-19 vaccine. The early response at presentation with illness, elevated responsiveness with disease severity, detection of asymptomatic seroconversion and persistence after the loss of antibody to the nucleoprotein (anti-NP) are all documented.Trial Registration: The ISARIC WHO CCP-UK study was registered at https://www.isrctn.com/ISRCTN66726260 and designated an Urgent Public Health Research Study by NIHR.Interpretation: The hybrid DABA displays the attributes necessary for an antibody test to be used in both clinical and reference serology. It allows the neutralising antibody response to be inferred early in infection and potentially in vaccine recipients. It is also of sufficient sensitivity to be used to provide serological confirmation of prior infection and provides a more secure measure for seroprevalence studies in the population generally than does anti-NP based on the Architect platform.Funding: This work is variously supported by grants from: the National Institute for Health Research (NIHR; award CO-CIN-01), the Medical Research Council (MRC; grant MC_PC_19059 and MC_PC_19078), MRC NIHR (grant CV220-111) and by the NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford (award 200907), NIHR HPRU in Respiratory Infections at Imperial College London with PHE (award 200927), Wellcome Trust and Department for International Development (DID; 215091/Z/18/Z), the Bill and Melinda Gates Foundation (OPP1209135), Liverpool Experimental Cancer Medicine Centre (grant reference C18616/A25153), NIHR Biomedical Research Centre at Imperial College London (IS-BRC-1215-20013), EU Platform for European Preparedness Against (Re-)emerging Epidemics (PREPARE; FP7 project 602525), and NIHR Clinical Research Network for providing infrastructure support for this research.Declaration of Interests: RST, MOM and PC report patent pending (Patent Application No. 2011047.4 for “SARS-CoV-2 antibody detection assay). All other authors declare no competing interests.Ethics Approval Statement: The use of tissues was approved by the CDRTB Steering Committee in accordance with the responsibility delegated by the National Research Ethics Service (South Central Ethics Committee – C, NRES reference 15/SC/0089).Written informed consent was obtained from all patients. Ethical approval was given by the South Central–Oxford C Research Ethics Committee in England (reference: 13/SC/0149), Scotland A Research Ethics Committee (reference: 20/SS/0028) and World Health Organization Ethics Review Committee (RPC571 and RPC572l; 25 April 2013)


Subject(s)
COVID-19 , Hemoglobin SC Disease , Pyruvate Carboxylase Deficiency Disease
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.13.20174193

ABSTRACT

Background Access to rapid diagnosis is key to the control and management of SARS-CoV-2. Reverse Transcriptase- Polymerase Chain Reaction (RT-PCR) testing usually requires a centralised laboratory and significant infrastructure. We describe the development and diagnostic accuracy assessment of a novel, rapid point-of-care RT-PCR test, the DnaNudge platform CovidNudge test, which requires no laboratory handling or sample pre-processing. Methods Nasopharyngeal swabs are inserted directly into a cartridge which contains all reagents and components required for RT-PCR reactions, including multiple technical replicates of seven SARS-CoV-2 gene targets (rdrp1, rdrp2, e-gene, n-gene, n1, n2 and n3) and human ribonuclease P (RNaseP) as a positive control. Between April and May 2020, swab samples were tested in parallel using the CovidNudge direct-to-cartridge platform and standard laboratory RT-PCR using swabs in viral transport medium. Samples were collected from three groups: self-referred healthcare workers with suspected COVID-19 (Group 1, n=280/386; 73%); patients attending the emergency department with suspected COVID-19 (Group 2, n=15/386; 4%) and hospital inpatient admissions with or without suspected COVID-19 (Group 3, n=91/386; 23%). Results Of 386 paired samples tested across all groups, 67 tested positive on the CovidNudge platform and 71 with standard laboratory RT-PCR. The sensitivity of the test varied by group (Group 1 93% [84-98%], Group 2 100% [48-100%] and Group 3 100% [29-100%], giving an average sensitivity of 94.4% (95% confidence interval 86-98%) and an overall specificity of 100% (95%CI 99-100%; Group 1 100% [98-100%]; Group 2 100% [69-100%] and Group 3 100% [96-100%]). Point of care testing performance was comparable during a period of high (25%) and low (3%) background prevalence. Amplification of the viral nucleocapsid (n1, n2, n3) targets were most sensitive for detection of SARS-CoV2, with the assay able to detect 1x104 viral particles in a single swab. Conclusions The CovidNudge platform offers a sensitive, specific and rapid point of care test for the presence of SARS-CoV-2 without laboratory handling or sample pre-processing. The implementation of such a device could be used to enable rapid decisions for clinical care and testing programs.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL